Myocardial O2 consumption in porcine left ventricle is heterogeneously distributed in parallel to heterogeneous O2 delivery.
نویسندگان
چکیده
Myocardial blood flow is unevenly distributed, but the cause of this heterogeneity is unknown. Heterogeneous blood flow may reflect heterogeneity of oxygen demand. The aim of the present study was to assess the relation between oxygen consumption and blood flow in small tissue regions in porcine left ventricle. In seven male, anesthetized, open-chest pigs, local oxygen consumption was quantitated by computational model analysis of the incorporation of 13C in glutamate via the tricarboxylic acid cycle during timed infusion of [13C]acetate into the left anterior descending coronary artery. Blood flow was measured with radioactive microspheres before and during acetate infusion. High-resolution nuclear magnetic resonance 13C spectra were obtained from extracts of tissue samples (159 mg mean dry wt) taken at the end of the acetate infusion. Mean regional myocardial blood flow was stable [5.0 +/- 1.6 (SD) and 5.0 +/- 1.4 ml.min(-1).g dry wt(-1) before and after 30 min of acetate infusion, respectively]. Mean left ventricular oxygen consumption measured with the NMR method was 18.6 +/- 7.7 micromol.min(-1).g dry wt(-1) and correlated well (r = 0.85, P = 0.02, n = 7) with oxygen consumption calculated from blood flow, hemoglobin, and blood gas measurements (mean 22.8 +/- 4.7 micromol.min(-1).g dry wt(-1)). Local blood flow and oxygen consumption were significantly correlated (r = 0.63 for pooled normalized data, P < 0.0001, n = 60). We calculate that, in the heart at normal workload, the variance of left ventricular oxygen delivery at submilliliter resolution is explained for 43% by heterogeneity in oxygen demand.
منابع مشابه
3 CHAPTER Myocardial O 2 consumption in porcine left ventricle is heterogeneously distributed in parallel to heterogeneous O 2 delivery
متن کامل
Progressively heterogeneous mismatch of regional oxygen delivery to consumption during graded coronary stenosis in pig left ventricle.
In normal hearts, myocardial perfusion is fairly well matched to regional metabolic demand, although both are distributed heterogeneously. Nonuniform regional metabolic vulnerability during coronary stenosis would help to explain nonuniform necrosis during myocardial infarction. In the present study, we investigated whether metabolism-perfusion correlation diminishes during coronary stenosis, i...
متن کاملHeterogeneous oxygen delivery to consumption matching during graded coronary stenosis in the porcine left ventricle
At rest, myocardial perfusion is reasonably well matched to regional metabolic demand, although both are heterogeneously distributed. Nonuniform regional metabolic vulnerability during coronary stenosis would help to explain nonuniform necrosis during myocardial infarction. We investigated two questions: (1) does the metabolism-perfusion correlation diminish during coronary stenosis? (2) is hig...
متن کاملMyocardial oxygenation in dogs during partial and complete coronary artery occlusion.
Regional myocardial oxygenation was assessed during partial and complete coronary artery occlusion using near infrared spectroscopy. In eight open-chest dogs, partial occlusions resulting in an approximately 42% decrease in left anterior descending coronary artery (LAD) blood flow produced an approximately 21% decrease in tissue O2 stores (tissue oxyhemoglobin plus oxymyoglobin) and no change i...
متن کاملBrain oxygen tension, oxygen supply, and oxygen consumption during arterial hyperoxia in a model of progressive cerebral ischemia.
We investigated the changes in brain oxygen tension (ptiO2) after ventilation with pure O2 in order to (1) clarify the pathophysiology of O2 exchange in the cerebral microcirculation; and (2) investigate the relationship between brain O2 tension, O2 delivery, and consumption in steady-state conditions during stepwise cerebral blood flow (CBF) reductions. A swine model was developed to reduce CB...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 287 3 شماره
صفحات -
تاریخ انتشار 2004